On the problem of classifying solvable Lie algebras having small codimensional derived algebras
نویسندگان
چکیده
In this paper, we study the classification of finite-dimensional real solvable Lie algebras whose derived are codimension 1 or 2. We present an effective method to classify (n+1)-dimensional having 1-codimensional provided that a full n-dimensional nilpotent is given. addition, problem classifying (n+2)-dimensional 2-codimensional proved be wild. case, subclass considered which extended from their by pair derivations containing at least one inner derivation.
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولOn the Geometry of Three-dimensional Bol Algebras with Solvable Enveloping Lie Algebras of Small Dimension
متن کامل
Classification of Solvable Lie Algebras
Several classifications of solvable Lie algebras of small dimension are known. Up to dimension 6 over a real field they were classified by G. M. Mubarakzjanov [Mubarakzjanov 63a, Mubarakzjanov 63b], and up to dimension 4 over any perfect field by J. Patera and H. Zassenhaus [Patera and Zassenhaus 90]. In this paper we explore the possibility of using the computer to obtain a classification of s...
متن کاملNovikov Structures on Solvable Lie Algebras
We study Novikov algebras and Novikov structures on finite-dimensional Lie algebras. We show that a Lie algebra admitting a Novikov structure must be solvable. Conversely we present an example of a nilpotent 2-step solvable Lie algebra without any Novikov structure. We construct Novikov structures on certain Lie algebras via classical r-matrices and via extensions. In the latter case we lift No...
متن کاملAbelian Complex Structures on Solvable Lie Algebras
We obtain a characterization of the Lie algebras admitting abelian complex structures in terms of certain affine Lie algebras aff(A), where A is a commutative algebra.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2022
ISSN: ['1532-4125', '0092-7872']
DOI: https://doi.org/10.1080/00927872.2022.2045302